The 'best' PV Model Depends on the Reason for Modelling

Steve Ransome (Independent PV consultant SRCL) and Juergen Sutterlueti (Gantner Instruments)

4th PV Performance Modelling Collaborative (PVPMC) Workshop
TÜV Cologne, Germany (22-23 Oct 2015)
Many reasons for modelling performance of PV modules/arrays

1) **Production process optimisation** (to minimise losses at Standard Test Conditions).
2) **Determination of coefficients** “P_{MAX} vs. T_{MODULE}”, “Efficiency vs. Irradiance” etc.
3) Overall system **energy yield predictions** vs. simulated weather inputs
4) **Benchmarking** different PV technologies (vs. differing P_{MAX}, Low Light ... coefficients)
5) **Validation of instantaneous performance** (prove module/array is working)
6) **Fault finding** (if under performance) – which model parameters are responsible?
7) **System output validation** e.g. kWh/ year
8) **Degradation rate** vs. time, which parameters are degrading?
Which parameters limit P_{MAX} at high and low light levels?

Typical clear morning CdTe at NREL:

- 06:15 | 0.07 kW/m² | T_Mod 17C
- 10:45 | 0.95 kW/m² | T_Mod 56C

Locus of P_{MAX} at V_{MP}
Which parameters limit \(P_{\text{MAX}} \) at high and low light levels?

Typical clear morning CdTe at NREL:

- \(P_{\text{MAX}} = I_{\text{SC}} \times \text{FF} \times V_{\text{OC}} \)
- \(I_{\text{SC}} \sim G_i, \text{AOI}, \text{AM}, \text{soil}, \text{snow}, \ldots \)
- \(V_{\text{OC}} \sim T_{\text{MOD}}, \ln(G_i) \ldots \)
- FF “Fill factor vs. irradiance” depends on module technology

(1) “Resistance at \(I_{\text{SC}} \)”
\[
R_{\text{SC}} = \frac{-1}{(dI/dV)|_{V=0}}
\]

(2) “Resistance at \(V_{\text{OC}} \)”
\[
R_{\text{OC}} = \frac{-1}{(dI/dV)|_{V=V_{\text{OC}}}}
\]

(3) “\(P_{\text{MAX}} @ \text{high light} \)” limited by \(R_{\text{OC}} \)

(4) “\(P_{\text{MAX}} @ \text{low light} \)” limited by \(V_{\text{OC}}, R_{\text{SC}} \) vs. \(G_i \)
Example PV Models and their fit types to IV curves

- **Full Curve Fit**
 - Fits entire curve – answer depends on glitches, non optimum performance, point distribution and/or weighting e.g. more important nearest \(P_{\text{MAX}} \)

- **Points + Gradients**
 - Takes values at only certain places on the IV curve e.g. \(V=0, V=V_{\text{MP}}, I=0 \) ...

- **Matrix method, IEC 61853, PVUSA, Empirical fits**
 - ONLY knows \(P_{\text{MAX}}, I_{\text{SC}}, V_{\text{OC}} \) etc. unknown
 - May know \(V_{\text{DC}} \)

- **1-diode model 5-7 parameters**
 - used in most simulation programmes, extended from de Soto 2006
 - Fits entire curve – answer depends on glitches, non optimum performance, point distribution and/or weighting e.g. more important nearest \(P_{\text{MAX}} \)
From IV curves vs. G_I and T_{MOD} to the three model types

IV curves

Vs. Irradiance and T_{MOD}

Matrix - P_{MAX} only

Avg Eff (G_I, T_{MOD})

1 diode (Full curve)

L_PH R_{SH} I_0 R_{SE} n_f

LFM (Points and gradients)

Described in next talk

From IV curves $vs. G_\text{I}$ and T_{MOD} to the three model types
<table>
<thead>
<tr>
<th>1 diode</th>
<th>Full curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>Avg Eff only</td>
</tr>
<tr>
<td>LFM</td>
<td>Points+ Gradients</td>
</tr>
</tbody>
</table>

Irradiance →

<table>
<thead>
<tr>
<th>good c-Si</th>
<th>Good $R_{sc} + R_{oc}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>good TF</td>
<td>Poorer R_{oc}</td>
</tr>
<tr>
<td>poor TF</td>
<td>Poor R_{sc} and R_{oc}</td>
</tr>
</tbody>
</table>

How models differentiate PV Technologies
IV curves

1 diode
Full curve
Irradiance →

Matrix
Avg Eff
only
Irradiance → Tmod ↑

LFM
Points+
Gradients
Irradiance →

good c-Si Good $R_{\text{sc}} + R_{\text{oc}}$

good TF Poorer R_{oc}

poor TF Poor R_{sc} and R_{oc}
KEY

- **GOOD**
- **MEDIUM**
- **POOR**
- **DIRECTION**

1 diode

Full curve

Irradiance →

Matrix

Avg Eff

Only Irradiance →

LFM

Points+ Gradients

Irradiance →

Good c-Si

Good $R_{sc} + R_{oc}$

- V_{MP}
- FF
- V_{MP}

Good TF

Poorer R_{oc}

- V_{MP}
- FF
- V_{MP}

Poor TF

Poor R_{sc} and R_{oc}

- V_{MP}
- FF

Points

- **nIMP**
- **nVMP**

Gradients

- **nRSC**
- **nROC**

Eff@High Tmod

- PR=100%
- Max Eff @ Low T, Low G

Eff@LowLight

- PR<100
- $P_{MAX} < P_{MAX.REF}$
- "flat" Eff Vs. T and G

Eff@High Tmod

- Max Eff @ Low T, High G
- "flat" Eff Vs. T and G

Optimum= 1

- **nIMP**
- **nVMP**

Good c-Si

- **Good $R_{sc} + R_{oc}$**

Good TF

- **Poorer R_{oc}**

Poor TF

- **Poor R_{sc} and R_{oc}**

KEY

- **GOOD**
- **MEDIUM**
- **POOR**
- **DIRECTION**

27-Oct-15

www.steveransome.com

NREL

Steve Ransome Consulting Limited
Needs for optimum modelling:

1) **Differentiate** “offsets between technologies” from “product variability within a type”

2) **Recreate** these curves with simple models

3) **Quantify** performance loss or optimisation possible from sub standard modules

Need curves that are easy to fit
Comparing residual errors from 1-diode, SAPM and LFM

PVSEC Paris 2013 4CO-11.1

Cumulative distribution functions for residuals of 11 modules measured at Sandia.
Degradation : IV curve Analysis : Poor CIGS in Arizona

Clear day IV measurements at 12:00 each month
Corrected for Irradiance and Module temperature.

- IV curve Degradation/Failure Analysis
- I_{SC} R_{SC} I_{MP} V_{MP} R_{OC} V_{OC}
- Needs irradiance and temperature corrections
- Either fit 1-diode coefficients or analyse changes in shape of the curves - can be hard
- Glitches/imperfect behaviour make fitting difficult
Degradation : Point/Gradient LFM Analysis : Poor CIGS in AZ
Clear day IV measurements at 12:00 each month Corrected for Irradiance and Module temperature

• Residuals (enLFM = “measured-predicted”) of degrading CIGS module, no temperature correction needed

• Grey bars show residual < ±1%.

• Any fall in residual curve shows degradation

• It’s easy to determine rate and cause (note changes from April to October)

• Note: n_{lsc} has more scatter as it has AOI and spectral and snow effects
Using an Hourly energy simulation program vary losses and study performance change sensitivity at different climates

1. Sun tracking gain
2. Shading
3. Snow
4. Soil
5. AOI
6. Spectrum
7. Seasonal Annealing
8. Thermal loss *(Gamma, NOCT)*
9. DC constant loss
10. Efficiency vs. Irradiance *(LLEC, I^2.Rs)*
11. Mismatch
12. DC I^2R loss cabling
13. Inverter Wakeup
14. Mppt loss
15. Inverter Efficiency
16. AC Constant loss
17. Clipping
18. Transformer efficiency
19. Tare
20. AC I^2R loss cabling
Insolation distribution vs. Irradiance (kW/m²) and Tmodule (°C) for worldwide sites

Energy yield will be affected differently at sites worldwide.

For example high R_{SERIES} causes loss at high light levels (right) which will lose more energy yield at high insolation sites (right).

INSOLATION vs. IRRADIANCE, T_{MODULE}

- **KEY:**
 - SITENAME
 - Site irradiance distribution
 - % Irradiance (contours) vs. Module temperature, Irradiance kW/m² at 30° tilt to equator
 - T_{MODULE} calculated assuming NOCT=47°C

Hotter/brighter sites have maximum insolation at both high temperature ↑ and high irradiance ➔

Cooler/duller sites have insolation distributions over a wide range of irradiance and lower temperatures.

Most world wide sites are between red and blue lines.
Energy yield sensitivity worldwide to finite changes in

Gamma, NOCT (left)

Low Light Efficiency, I²R_{SERIES} (right)

GAMMA +0.1%/K ↑

NOCT -10°C ↑

Hot

Cool

DIAGRAM 2:

Thermal stage loss % ↓

1000 1200 1400 1600 1800 2000 2200 2400

POA INSOLATION kWh/m²/y

LLEC +5% ↑

I²R_{SERIES} +5% ↑

Bright

Dull

DIAGRAM 5:

Irradiance stage loss % ↓

1000 1200 1400 1600 1800 2000 2200 2400

POA INSOLATION kWh/m²/y

Conclusions

Recommendations

• Normalise data to ensure easier understanding (e.g. $I_{SC.MEAS}/I_{SC.STC}/G_i$)
• Use physically significant coefficients (e.g. nV_{OC})
• Ensure IV Scans are good quality, calibrated and believable with little scatter

• Simple kWh/kWp calculations, optimum sites
 Efficiency only model may be enough

• Fast inline check, degradation/ non-optimum
 “points+gradients” models better

• For the ultimate understanding
 the full weighted point IV curves should be studied
Acknowledgements

- Gantner Instruments staff
- Bill Marion of NREL for data Bill.Marion@nrel.gov
- This analysis and conclusions of NREL data based solely on available information

- Thank you for your attention!

For more information:

steve@steveransome.com
www.steveransome.com
• Spare slides
Model #2) Simplified normalised Loss Factors Model (LFM)

26th EU PVSEC 2011 Hamburg 4AV.2.41

“6 physically significant normalised orthogonal parameters”

Easily Determine

- Temperature and Irradiance Coefficients
- Performance validation
- Process optimisation (minimise losses)
- Fault finding
- Degradation rate and cause

I and V curvature parameters can detect

- Cell mismatch/shading (I @ 0.5*V_{MP})
- Non Ohmic back contacts (V @ 0.5*I_{MP})

\[\text{PR}_{\text{DC}} = \frac{\text{Eff}_{\text{MEASURED}}}{\text{Eff}_{\text{NOMINAL}}} = \frac{n_I_{\text{SC}} \times n_{R_{\text{SC}}} \times n_{I_{\text{MP}}} \times n_{V_{\text{MP}}} \times n_{R_{\text{OC}}} \times n_{V_{\text{OC}}}}{n_I_{\text{SC}} \times n_{R_{\text{SC}}} \times n_{I_{\text{MP}}} \times n_{V_{\text{MP}}} \times n_{R_{\text{OC}}} \times n_{V_{\text{OC}}}} \]