Realistic Yield Expectations for Bifacial PV Systems – an Assessment of Announced, Predicted and Observed Benefits

Christian Reise
Alexandra Schmid

Fraunhofer Institute for Solar Energy Systems ISE

PV Performance Modelling and Monitoring Workshop

Cologne, October 23, 2015
Bifacial PV Modules and Systems

Bifacial gain

Ratio of additional “rear side” kWh to “front only” kWh

$$BG = \frac{E_{\text{rear}}}{E_{\text{front}}}$$
Bifacial PV Modules and Systems
Bifacial gain

Some bifacial gain values from literature (mainly experimental / test systems):

- bSolar 2014: 24%
- bSolar 2014: 15%
- Sanyo 2009: 22%
- ISC Konstanz 2014: 22%
- EdF R&D 2014: 57%
- ECN 2014: 20%
Bifacial PV Modules and Systems

Bifacial gain

- Is the bifacial gain a module property?
- Is it around 20%?
- What about large commercial installations?
AGENDA

- Efficiency and Power: Definitions
- Predicting Bifacial Yields
- Exemplary Results
- Conclusion
Bifacial PV Modules and Systems

Influence on bifacial gain

Yield depends on with monofacial with bifacial modules

- **STC power**: ++ ++
- **module properties**: + ++
- **tilt angle**: + ++
- **height**: o ++
- **albedo**: + ++
- **mounting structure**: o +

... and other factors

© Fraunhofer ISE
Bifacial Efficiency and Power
A Straight Forward Approach

Yield ~ \(G(\text{front}) \times \text{eff}(\text{front}) + G(\text{rear}) \times \text{eff}(\text{rear}) \)

= \(G(\text{front}) \times \text{eff}(\text{front}) + G(\text{rear}) \times \text{eff}(\text{front}) \times BF \)

- STC value
 - 18% ... 22%
- Optical gain
 - 5% ... 50%
- Bifaciality factor
 - 75% ... 95%

These factors determine bifacial gain

- Module property (laboratory)
- System property (software)
- Module property (laboratory)
Predicting Bifacial Yields
Predicting Optical Gains

- No commonly used software available (the current versions of e.g. PVSYST, PV*SOL, and NREL’s SAM cannot predict optical gains)
- Numerical methods from physics and optics offer different approaches:
 - View factor method
 - Ray tracing method
Predicting Bifacial Yields

The view factor method

The view factor $F(1,2)$ is the proportion of the radiation which leaves surface 1 that strikes surface 2.
Predicting Bifacial Yields

The view factor method

The view factor $F_{1 \rightarrow 2}$ is the proportion of the radiation which leaves surface 1 that strikes surface 2.

$$F_{1 \rightarrow 2} = \frac{1}{A_1} \int_{A_1} \int_{A_2} \frac{\cos \theta_1 \cos \theta_2}{\pi s^2} dA_2 dA_1$$
Predicting Bifacial Yields
The ray tracing method

...traces the path of light through pixels in an image plane and simulates the effects of its encounters with virtual objects.

© Fraunhofer ISE
Predicting Bifacial Yields

Predicting Optical Gains

- View factor method:
 - easy to implement for simple geometries
 - becomes complex task for realistic systems

- Ray tracing method:
 - less easy to implement
 - time consuming
 - delivers rear side irradiance, rear side inhomogeneity, mutual (front side) shading, influence of mounting structure...
Predicting Bifacial Yields
Rendering with Radiance

Features:
- Backward ray tracing
- Arbitrary surface properties
- Artificial light sources
- Natural light sources (sun & sky)
- Results in units of W/m²sr or W/m²
- Operates in an Unix environment
- No contemporary user interface
Predicting Bifacial Yields
Rendering with Radiance

- Artificial light ...
Predicting Bifacial Yields
Rendering with Radiance

- Natural light ...

- See also: Ch. Reise, A. Kovach: *PV Shading Analysis in Complex Building Geometries*, 13th EUPVSEC, Nice (FR), 1995
Predicting Bifacial Yields
Rendering with Radiance
Predicting Bifacial Yields
Rendering with Radiance

An example:

- Bifacial modules
- Mounting Structure
- Albedo properties
- Sky radiance distribution

... human view
Predicting Bifacial Yields
Rendering with Radiance

An example:
- Bifacial modules
- Mounting Structure
- Albedo properties
- Sky radiance distribution

... aerial view
Predicting Bifacial Yields
Rendering with Radiance

An example:

- Bifacial modules
- Mounting Structure
- Albedo properties
- Sky radiance distribution

... mouse view
Predicting Bifacial Yields

Validation I

The prototype:
Bifacial module test installation, monitored by Fraunhofer ISE in 2009
Predicting Bifacial Yields

Validation I

System model validation results (235 days in 2009):

<table>
<thead>
<tr>
<th></th>
<th>height</th>
<th>tilt angle</th>
<th>albedo</th>
<th>bifacial Gain DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>0.2 m</td>
<td>15</td>
<td>0.64</td>
<td>21.9%</td>
</tr>
<tr>
<td>Model</td>
<td>0.2 m</td>
<td>15</td>
<td>0.64</td>
<td>21.1%</td>
</tr>
</tbody>
</table>
Predicting Bifacial Yields

Validation II

Single module model validation...
Predicting Bifacial Yields
Validation II

Single module model validation results: irradiation vs. tilt angle
Predicting Bifacial Yields

Validation II

Single module model validation results: I_{sc} vs. tilt angle
Exemplary Results

- Bifacial modules will be installed in commercial PV projects.
- Commercial PV projects will follow or extend traditional installation schemes, therefore, some contradictions will arise:
 - Module height vs. wind load with rooftop systems.
 - Optical gain vs. space requirements (GCR).
 - Increased albedo vs. maintenance effort.
- Most probably, commercial PV projects will show lower bifacial gains than test or demonstration installations.
Exemplary Results

Some bifacial gain values from our consulting work:
Exemplary Results

First example values for a rooftop system:

<table>
<thead>
<tr>
<th>type</th>
<th>height</th>
<th>tilt angle</th>
<th>albedo</th>
<th>GCR</th>
<th>Country</th>
<th>bifacial Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>rooftop</td>
<td>0.1 m</td>
<td>20</td>
<td>0.40</td>
<td>0.40</td>
<td>DE</td>
<td>6%</td>
</tr>
<tr>
<td>rooftop</td>
<td>0.3 m</td>
<td>20</td>
<td>0.40</td>
<td>0.40</td>
<td>DE</td>
<td>11%</td>
</tr>
<tr>
<td>rooftop</td>
<td>0.5 m</td>
<td>20</td>
<td>0.40</td>
<td>0.40</td>
<td>DE</td>
<td>14%</td>
</tr>
<tr>
<td>rooftop</td>
<td>0.3 m</td>
<td>20</td>
<td>0.20</td>
<td>0.40</td>
<td>DE</td>
<td>6%</td>
</tr>
<tr>
<td>rooftop</td>
<td>0.3 m</td>
<td>20</td>
<td>0.40</td>
<td>0.40</td>
<td>DE</td>
<td>11%</td>
</tr>
<tr>
<td>rooftop</td>
<td>0.3 m</td>
<td>20</td>
<td>0.60</td>
<td>0.40</td>
<td>DE</td>
<td>16%</td>
</tr>
</tbody>
</table>
Summary

- Bifacial modules show a big potential for increased yield and/or reduced electricity costs
- Bifacial gain is not a module property
- Bifacial module characterization needs some proper definitions
- Each system layout needs an individual assessment
- Small experimental or demonstration systems show bifacial gains of 15% to 25%
- With larger commercial systems, realistic bifacial gains are expected in a range from 5% to 15%
- Optimization of mounting geometry and mounting structure is essential in order to draw the full benefits from bifacial PV modules
Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Dr. Christian Reise

www.ise.fraunhofer.de
christian.reise@ise.fraunhofer.de