Vorm Urknall

Martin Bojowald im Interview

Was war der Anfang von allem? Abschließend beantworten kann Martin Bojowald diese Frage natürlich nicht, verfolgt aber einen Ansatz, der über den Urknall hinausgeht. Warum der Physiker immer wieder an die Grenzen der Naturwissenschaften stößt und warum Worte manchmal mehr Ordnung in die Welt der Zahlen und Formeln bringen, erklärt er im Interview.

Herr Bojowald, im Jahr 2009 stellte ihr Buch „Zurück vor den Urknall. Die ganze Geschichte des Universums“ die Theorien von Albert Einstein und Stephen Hawking in Frage.

Das ist zwar richtig, aber es ging nie darum, ihre Leistungen oder gar ihr Lebenswerk zu diskreditieren, sondern genau zu schauen, ob sich ihre Theorien auch mathematisch beweisen lassen. Damals war die gängige Lehrmeinung, dass der Urknall der Anfang von allem gewesen sei. Stichhaltig war das nie, denn es fehlte damals und es fehlt noch immer an mathematischen Beweisen, dass ihre Theorien auch mathematisch konsistent sind.

Gab es Denn aus Ihrer Sicht keinen Urknall?

Doch, es ist nur die Frage, was man darunter versteht. Wenn man diesem Ereignis die Rolle des Ursprungs des Universums zuspricht, geht das sicherlich zu weit. Für diese These spricht die Singularität als notwendige Voraussetzung. Mit Singularität ist gemeint, dass physikalische Größen wie Dichte oder Temperatur eine unendliche Größe erreichen. Neue Berechnungen, die erst in den vergangenen Jahren erarbeitet wurden, legen jedoch die Vermutung nahe, dass es diese unendliche Dichte nicht gegeben hat, sondern nur eine sehr hohe Dichte. Das würde die Konzentration des gesamten Universums mit einer Billiarde Sonnen auf einen Punkt konzentrieren. In diesem extremen Zustand ist die Dichte so groß, dass selbst die Zeit nicht hindurchpasst. Eine zeitlose Phase, in der sich kollabierende und expandierende Kräfte aufheben. Das Verschwinden der Zeit in dieser Theorie hat viele meiner Kollegen in der Physik nicht glücklich gemacht, denn es widersprach der bis dahin vorherrschenden Lehrmeinung und auch der Allgemeinen Relativitätstheorie.

Welche Bedeutung messen sie dem Urknall bei?

Der Unterschied zwischen unendlicher Dichte und der unvorstellbaren Dichte, die ich vorhin beschrieben habe, klingt vielleicht nach Haarspalterei, doch bedeutet es im Kern, dass der Urknall eher einen Übergang beschreibt.

Welcher Übergang ist damit gemeint?

Aktuelle Modelle sprechen dafür, dass das Universum schon immer da war. Nur war es ein kollabierendes System, das sich immer weiter zusammengezogen hat, bis sich die Bewegung durch abstoßende Kräfte umgekehrt hat. Es wurde zu einem expandierenden Universum. In diesem expandierenden Universum leben wir heute, doch gibt es auch für diese Expansion keinen linearen Verlauf. Vieles deutet darauf hin, dass diese Expansion ewig anhält und entsprechend nur die Dichte geringer wird. Aber wir wissen viel zu wenig, um das mit Gewissheit sagen zu können. Auch können wir eine Verlangsamung oder eine Beschleunigung dieses Prozesses nicht ausschließen. Das gilt auch für eine Umkehr des Prozesses. Dann würde der Kreislauf von Kollaps und Expansion von Neuem beginnen.

Dann könnte man auch keinen Anfang nach der Vorstellung des Urknalls definieren, sondern müsste von einem ewig andauernden Prozess ausgehen?

Aus der mathematischen Perspektive ist das ganz sicher der angenehmere Angang. Die Entstehung aus dem Nichts heraus stellt unsere Modelle bisher vor unlösbare Probleme. Und aus dem Nichts heraus ist auch die Mathematik oder die theoretische Physik nur schwer vorstellbar. Ein immerwährender Prozess lässt sich dagegen schon ein wenig leichter in Formeln packen, obwohl wir auch da noch am Anfang stehen und uns Vereinfachungen bedienen müssen, die den tatsächlichen Befund nur unzureichend abbilden.

Schwingt bei der Suche nach dem Ursprung des Universums nicht zwangsläufig die Suche nach dem Sinn mit?

Aus meiner Sicht nicht. Es ist für mich die Suche nach Erklärungen für den Zustand, in dem sich das Universum befindet, in dem es sich befunden hat und in dem es sich befinden wird. Die Kosmologie ist in meiner Forschung ein Anwendungsfall für mathematische Modelle, die helfen sollen, ein tieferes Verständnis zu entwickeln.

Welche Rolle spielt bei der Entwicklung dieses Verständnisses die Erforschung von Gravitationswellen? Kollegen von Ihnen haben erstmals im August 2017 die Kollision zweier Neutronensterne genau vermessen und sprachen von einer neuen Ära der Astronomie.

Erstmals konnte ein Zittern der Raumzeit gemessen und nachgewiesen werden. Es ist ein weiteres Stück Evidenz für eine Theorie, die schon seit fast einem Jahrhundert existiert. Mit den Gravitationswellen lassen sich Struktur und Eigenschaften von Himmelskörpern erforschen. Bei der beobachteten Kilonova, also der Kollision von zwei Neutronensternen, bestätigen die Strahlungseigenschaften die These, dass beim Zusammenprall radioaktives Material ins All geschleudert wird. Auch schwere chemische Elemente wie Gold oder Platin entstehen offenbar bei solchen Sternkarambolagen. Ihr Ursprung war bislang unklar. Für die Astronomie öffnen sich damit sicher neue Türen, für die Bestätigung und Wiederlegung der Urknall-Theorie und meine Arbeit werden bahnbrechende Veränderungen noch auf sich warten lassen.

Warum?

Weil die Messmethoden bislang noch wesentlich zu unpräzise sind, um Rückschlüsse auf das Gesamtsystem zu ermöglichen. Wir können jetzt isolierte Ereignisse wesentlich besser beobachten und in den Gesamtkontext setzen. Ein vollständiges Bild ergibt sich daraus noch nicht.

Ordnung in einem scheinbar chaotischen System zu schaffen – das ist eine wesentliche Aufgabe ihrer Forschung. Dazu gehört es, die Ergebnisse in wissenschaftliche Aufsätze zu transferieren. Fällt es Ihnen mit Zahlen oder mit Worten leichter?

Im Prinzip mit Zahlen, doch mathematische und physikalische Thesen in Worte zu fassen, bedeutet auch, dass man die eigene Arbeit reflektiert und aus einer anderen Perspektive betrachtet. Man stößt mit der Sprache zwar schnell an Grenzen, aber dafür werden andere Probleme klarer, die sich hinter den Zahlen verbergen.

Wenn Sie einen Wunsch für ihre Arbeit frei hätten, was wäre das?

Dass die Kollegen aus der Physik die reinen mathematischen Beweise experimentell bestätigen könnten. Dadurch hätten diese Beweise einen viel höheren Wert. Das wäre schon großartig.


Herr Bojowald, wir Danken Ihnen für das Gespräch!

Bildnachweise: © Gabriela Secara