
PEL Adrian

Compressible network flow

PEL Adrian calculates flows and pressures for high velocity, compressible gases in a network and is relevant for the modelling of relief streams

PEL Adrian calculates single phase high velocity gas or vapour flowrates and pressure drops in piping systems. These may consist of a single pipe or a network. When supplied with the pressure at the inlets and outlet, PEL Adrian calculates the flows and internal pressures throughout the network. Alternatively, given the input flows and the exit pressure, it will calculate the flows and pressures at all other points.

WHAT WE OFFER

PEL Adrian has all of the flexibility you need to draw and construct your models using an intuitive graphical interface. Calculating compressible flow by hand is an iterative and time consuming process. PEL Adrian has a tried and tested calculation engine to generate the results, predict flow chokes and provide the analysis the engineer needs simply and easily.

KEY FEATURES

A number of specific types of equipment are modelled:

- Contractions
- Expansions
- Relief valves
- Bursting discs
- Bends
- Fittings

Creating models is simple:

- Simple drag and drop tool for drawing the model
- Automatic connection of vessels and fittings
- Automatic pipe size correction when diameters are changed
- Table view of the system to allow quick modifications to multiple items
- Simple tools for internal pipe diameters and pipe roughness
- K Value calculator for fitting losses
- Physical property calculator through a simple interface
- Insert isometric or sketch into the drawing tool so the model can be built over the isometric

BENEFITS

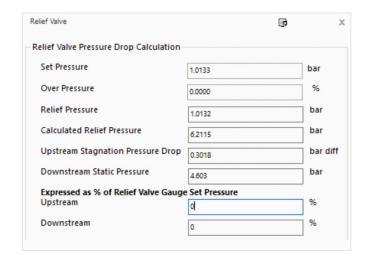
- Users can have complete confidence in the results
- Reduces risk of human errors in calculations essential when working with safety critical equipment
- Allows engineers to be more efficient and productive
- Provides a documented record of calculations for audit
- Improves QA and standardises procedures by everyone using the same set of data and calculations
- PEL Adrian can be licensed as an add-on to PEL or as a completely separate programme

- Workspace is fully customisable with dockable windows to display the information you want the way you want it
- Calculated results and input data can be highlighted on the drawing
- Result tables can be copied and pasted into other applications such as MS Excel
- Calculated results can be presented in a customisable table of results and exported to MS Office

The results table provides simple and useful results displaying both stagnation and static pressure as well as temperatures, Mach Number and gas velocities. The table also highlights where chokes/pressure discontinuities are present in the network. These can also be displayed graphically.

Dar Dar C m/s mm	itting #	Fitting		Static Pressure	Stagnation Pressure	Temperature	Mach Number	Velocity	Diameter	
miet contraction (2) 6.4608 6.5132 19.3297 0.1075 36.8484 -				bar	bar	С		m/s	mm	
2 straight (1) 6-64008 6-5132 19.3297 0.1075 36.6949 26.6 5 bursting disc (1) 6-4137 6-46666 19.33199 0.1005 37.1179 26.6 3 bursting disc (2) 6-5504 6-6038 19.3065 0.1004 37.4559 -	1	inlet contraction	(1)	6.5132	6.5132	20	-	0	-	
3 bursting disc (1) 6.4137 6.4666 19.3199 0.1083 37.1179 2.66 3 bursting disc (2) 6.3504 6.4038 19.3063 0.1094 37.4859 -	1	inlet contraction	(2)	6.4608	6.5132	19.3297	0.1075	36.8484	-	
3 bursting disc (2) 6.3504 6.4038 19.3063 0.1094 37.4859 -	2	straight	(1)	6.4608	6.5132	19.3297	0.1075	36.8484	26.6	
	3	bursting disc	(1)	6.4137	6.4666	19.3199	0.1083	37.1179	26.6	
3 bursting disc (3) 6.3504 6.4038 19.3063 0.1094 37.4859 -	3	bursting disc	(2)	6.3504	6.4038	19.3063	0.1094	37.4859	-	
	3	bursting disc	(3)	6.3504	6.4038	19.3063	0.1094	37.4859	-	
4 straight (1) 6.3504 6.4038 19.3063 0.1094 37.4859 26.6	4	straight	(1)	6.3504	6.4038	19.3063	0.1094	37.4859	26.6	
5 relief valve (1) 6.1564 6.2115 19.2622 0.1128 38.6611 26.6	5	relief valve	(1)	6.1564	6.2115	19.2622	0.1128	38.6611	26.6	
5 relief valve (2) 4.0012 6.2115 -14.3328 0.8178 263.7221 -	5	relief valve	(2)	4.0012	6.2115	-14.3328	0.8178	263.7221		
6 straight (1) 4.603 4.6767 18.6853 0.1507 51.6058 26.6	6	straight	(1)	4.603	4.6767	18.6853	0.1507	51.6058	26.6	
6 straight (2) 4.3274 4.4058 18.5143 0.1603 54.8606 26.6	6	straight	(2)	4.3274	4.4058	18.5143	0.1603	54.8606	26.6	

Pressures	•	Export	Copy to	clipboard								
					Pre	ssures	5					
7												
6.5	_											
6												
5.5												
5												
4.5												
4 /\/s	tatic	/\/Stagr	ation									
3.5	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	
User Results												


TÜV Rheinland Industrial Services Limited
Technical Engineering Consultancy
PEL Support Services
Pavilion 9, Byland Way
Belasis Business Park
Billingham
TS23 4EB
United Kingdom
+44 1925 93 8668
pel.support@tuv.com
www.tuv.com/pelsoftware

ADRIAN AND RELIEF STUDIES

Relief systems with relief valves and/or bursting discs require modelling of the relief system to determine either pressure drops or the system capacity.

PEL Adrian provides the tools to complete this simply and easily.

For relief valves the upstream irrecoverable pressure loss due to friction and the back pressure is determined and reported as a pressure loss and a percentage of set pressure.

For bursting disc systems the relief pressure and the exit pressure, along with the frictional losses in the pipe and across the disc can be modelled to determine the system capacity.

